A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.

نویسندگان

  • J J DeMarco
  • C H Cagnon
  • D D Cody
  • D M Stevens
  • C H McCollough
  • J O'Daniel
  • M F McNitt-Gray
چکیده

The purpose of this work was to extend the verification of Monte Carlo based methods for estimating radiation dose in computed tomography (CT) exams beyond a single CT scanner to a multidetector CT (MDCT) scanner, and from cylindrical CTDI phantom measurements to both cylindrical and physical anthropomorphic phantoms. Both cylindrical and physical anthropomorphic phantoms were scanned on an MDCT under the specified conditions. A pencil ionization chamber was used to record exposure for the cylindrical phantom, while MOSFET (metal oxide semiconductor field effect transistor) detectors were used to record exposure at the surface of the anthropomorphic phantom. Reference measurements were made in air at isocentre using the pencil ionization chamber under the specified conditions. Detailed Monte Carlo models were developed for the MDCT scanner to describe the x-ray source (spectra, bowtie filter, etc) and geometry factors (distance from focal spot to isocentre, source movement due to axial or helical scanning, etc). Models for the cylindrical (CTDI) phantoms were available from the previous work. For the anthropomorphic phantom, CT image data were used to create a detailed voxelized model of the phantom's geometry. Anthropomorphic phantom material compositions were provided by the manufacturer. A simulation of the physical scan was performed using the mathematical models of the scanner, phantom and specified scan parameters. Tallies were recorded at specific voxel locations corresponding to the MOSFET physical measurements. Simulations of air scans were performed to obtain normalization factors to convert results to absolute dose values. For the CTDI body (32 cm) phantom, measurements and simulation results agreed to within 3.5% across all conditions. For the anthropomorphic phantom, measured surface dose values from a contiguous axial scan showed significant variation and ranged from 8 mGy/100 mAs to 16 mGy/100 mAs. Results from helical scans of overlapping pitch (0.9375) and extended pitch (1.375) were also obtained. Comparisons between the MOSFET measurements and the absolute dose value derived from the Monte Carlo simulations demonstrate agreement in terms of absolute dose values as well as the spatially varying characteristics. This work demonstrates the ability to extend models from a single detector scanner using cylindrical phantoms to an MDCT scanner using both cylindrical and anthropomorphic phantoms. Future work will be extended to voxelized patient models of different sizes and to other MDCT scanners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patient‐specific CT dosimetry calculation: a feasibility study

Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of thi...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Dosimetry of CBCT: methods, doses and clinical consequences

The use of Cone beam CT (CBCT) systems for Image Guided Radiotherapy is rapidly expanding in the developed world. With its use comes concern for the increased risks of additional radiation exposure. Quantification of the imaging dose is necessary in order to report, optimise and justify CBCT exposures. This article reviews the current methods of dose measurement and calculation including dose m...

متن کامل

Comparison of the Radiation Dose from Cone Beam Computed Tomography and Multidetector Computed Tomography in Examinations of the Hand Vergleich der Strahlendosis von Cone-Beam Computertomografie und Multidetektor Computertomografie in Untersuchungen der Hand

Correspondence Dr. Jakob Neubauer Radiology, University Medical Center Freiburg Hugstetterstr. 55 79106 Freiburg Germany Tel.: ++ 49/7 61/3 8262 Fax: ++ 49/7 61/3 8300 [email protected] Abstract ▼ Purpose: Comparison of radiation dose of cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) in examinations of the hand. Materials and Methods: Dose ca...

متن کامل

Organ Dose Determination in X-ray Imaging

Organ dose is the absorbed radiation energy from ionizing radiation to an organ, divided by the organ mass. Organ doses of a patient cannot be measured directly in the patient, but their determination requires dose measurements in anthropomorphic patient models i.e. phantoms or Monte Carlo simulations. Monte Carlo simulations can be performed for example by using computational phantoms or patie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 50 17  شماره 

صفحات  -

تاریخ انتشار 2005